

Outline

- . Introduction: state-of-the-art, nodule formation
- * Bonded cast-Si targets as an alternative
- ❖ Internal lab evaluation of cast-Si targets
- * Industrial applications:
 - I. c-Si solar cells, SiN_x:H coatings
 - II. Touch sensors, SiO₂ coatings
- ❖ Cost comparison for glass coating example (SiO₂)
- ***** Conclusions

State-of-the-art; nodule formation

Rotary Si targets: what's the problem ?

State-of-the-art uses non-aluminium alloyed (B-doped) plasma sprayed Si targets.

Such targets have a tendency to form nodules easily:

Plasma sprayed Si targets used in SiO₂ deposition process (display industry)

Cast Si-rotary Kyoto seminar 060313 PL -

materials for a better life

CONFIDENTIAL

Bonded cast-Si targets as an alternative

Product characteristics

Multi-segment, bonded cast-Si rotary targets

- BT: Ti (re-usable)
- Si characteristics:
 - Purity (not including B, C, N, O): 5N (max. 10 ppm metallic impurities, ICP-MS)
 - Density: ≥ 2.32 g/cc (> 99.5 % of TD)
 - Poly-crystalline (relatively coarse micro-structure)
 - B-doped, resistivity < 20 mohm.cm (DIN40435, 4-point probe measurement)
- Segment characteristics:
 - Wall thickness: 14 mm (up to 20 mm possible)
 - Segment length: typic. 250 mm
 - ID: 135 mm
- Targets are recycled at end-of-life

Cast Si-rotary Kyoto seminar 060313 PL CONFIDENTIAL

materials for a better life

Lab evaluation of cast-Si targets

UTTU characteristics for dielectric depositions

- Leybold Optics A600/V7: dynamic glass sputter coating line.
- Twin rotary cathode used: SCI end blocks, LO magnet arrays, target length 2 X 0.6 m equiped with cast-Si targets (14 mm wall thickness).
- MF-AC sputter power supplies: Advanced Energy PEII (2 X 10 kW in M/S)
- Arc control unit activated (V_{trip} = 155 V, Arc_{off} time = 240 μs)
- System doesn't dispose of any negative feedback control (no PEM or voltage control). Hence, processes with hysteresis must be run in poisoned mode.

Cast Si-rotary Kyoto seminar 060313 PL CONFIDENTIAL

14

materials for a better life

Long duration test in UTTU

Target surface aspect after 6 h SiO_2 reactive deposition test with 9 kW (15 kW/m) in poisoned mode (325 V), pressure 5.6 µbar.

Cast Si-rotary Kyoto seminar 060313 PL - CONFIDENTIAL

17

materials for a better life

Industrial applications: I. C-Si solar cells: SiNx:H deposition

Tests at Photovoltech N.V., Belgium (Dr. J. szlufcik, S. Janssens)

Industrial applications:
II. Touch Sensors: SiO₂ deposition

Tests at an undisclosed Asian manufacturer

Cost comparison: sprayed vs. cast