

Outline

- * Why rotary magnetrons for ITO?
- Long term sputter stability of rotary ITO
- Influence of several sputter parameters on the ITO thin film properties of DC deposited films
 - Reactive gas mixture
 - Planar compared with rotary magnetrons
 - Substrate temperature
 - Sputter power load
- Other compositions than ITO-90/10
- ❖ Cost comparison rotary vs. planar technology: two examples
- **❖** Conclusions

WHY ROTARY TECHNOLOGY FOR ITO?

SPUTTER STABILITY OVER TARGET LIFETIME

'BUTTU' characteristics

- Horizontal, cantilever magnetron (SCI), length 1 m (960 mm target length).
- Sputter down against Cu-shields (no coating collection)
- DC power supply: AE Ascent, 60 kW (yielding max. power load > 60 kW/m)
- Electrically isolated anode (gas manifold serving as anode)
- Cathode cooling: water in 21℃, appr. 5 bar, typical flow 31.7 litres/min.

Rotary technology seminar Kyoto 060313, PL

CONFIDENTIAL materials for a better life

THIN FILM PROPERTIES OBTAINED WITH ROTARY AT HIGH POWER

Deposition experiments: sputter system

Leybold Optics A600/V7: dynamic sputter coating line with twin rotary cathode and with twin planar cathode

Substrate pre-heating in load-lock possible (RT – 430° C)

Rotary cathodes: SCI end blocks, LO magnet arrays, target length 0.6 m Sputter power supplies: Advanced Energy Pinnacle+ (2 x 10 kW in M/M)

Rotary technology seminar Kyoto 060313, PL

22 CONFIDENTIAL materials for a better life

> Tuning of the reactive process

➤ Difference rotary vs. planar

➤ Influence of substrate temperature

➤ Sputter power load: T_{sub} appr. 200℃

OTHER COMPOSITIONS THAN ITO-90/10

TCO trends in Hetero-Junction crystalline Si solar cells

- Cell production cost reduction: requires usage of rotary technology for all sputter depositions (metal and TCO).
- HJ c-Si cells convert sunlight up to appr. 1200 nm: TCO with increased transmittance in the NIR required :
 - A lot of R&D on pure H-doped In2O3 (IO:H), but:
 - brittle material, low sputtering target production yield
 - difficult to make rotary In₂O₃ targets
 - high In content
- > Hence: expensive targets and high coating cost with In2O3
- ITO-97/3 (3 wt % SnO₂) targets can still be produced in rotary format with high yield. Could be a nice trade-off for the industry.

Rotary technology seminar Kyoto 060313, PL

CONFIDENTIAL materials for a better life

COATING COSTS: TWO EXAMPLES

